3192

AN INTRAMOLECULAR INTERACTION BETWEEN HALOGEN AND SILICON DISPLAYED IN SOME PHYSICAL PROPERTIES OF SILYLMETHYL HALIDES*

Josef Pola and Václav Chvalovský

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 16502 Prague 6-Suchdol 2

Received February 13th, 1978

A discussion of dipole moment and NMR and IR spectral data for silylmethyl halides gathered from literature and obtained in this work is presented. The dipole moments for $(CH_3)_3SiCH_2Y$ having Y = F, Cl, Br, and I and NMR spectral data for X_3SiCH_2Y having $X = CH_3$, H, C_2H_5O and halogen appear to be consonant with the assumption of an intramolecular interaction between the halogen and the silicon. Confirmatory evidence for this interaction in X_3SiCH_2Y is gained by the oxygen basicity in $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ obtained from the IR spectra of hydrogen bonds of phenol interacting with $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ in CCl_4 .

Many experimental data reported on silvlmethyl chlorides suggest operation of an intramolecular interaction between chlorine and silicon termed the α -effect¹⁻⁵. To date, no detailed study on other silvlmethyl halides have been carried out except the work of Bellama³ and MacDiarmid, who suggested that intramolecular interaction between the silicon and the halogen diminishes when going from H₃SiCH₂Cl via H₃SiCH₂Br to H₃SiCH₂I. As a continuation of our study of α -carbofunctional organosilicon compounds we discuss in this note dipole moment, NMR, and IR spectral data for X₃SiCH₂Y having Y = F, Cl, Br and I with the aim to assess a role of the α -effect in these compounds.

EXPERIMENTAL

All the compounds studied of the types $(CH_3)_3SiCH_2Y$ and $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ with n = 1-3, and Y = Br, I, were prepared by usual procedures: iodomethylsilanes were prepared by a treatment of corresponding chloromethylsilanes with sodium iodide in dry acetone, bromomethylsilanes were obtained by the reaction of bromomethyl(chloro)methylsilanes with ethanol in the presence of pyridine or urea in dry diethyl ether. Purity of all the compounds was checked by gas-liquid chromatography and by elemental analysis. Physical constants of new compounds prepared are collected in Table I, and those for the compounds already reported agree with those found in literature. Dipole moments of $(CH_3)_3SiCH_2Y$ with Y = Br and I were determined

^{*} Part CLVIII in the series Organosilicon Compounds; Part CLVII: This Journal 43, 3179 (1978).

Interaction Between Halogen and Silicon

by measuring concentration dependence of the dielectric constant and specific volume of 10^{-2} to 10^{-3} M benzene solutions of these compounds. Dielectric constants were measured by resonance method, using the instrument after LeFévre and Russel¹¹, and dipole moments were calculated from experimental data according to Halverstadt and Kumler¹². Proton acceptor ability of the oxygen in $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ was determined from the IR spectra of hydrogen bonds of phenol due to interaction with $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ in CCl₄ as described¹³.

RESULTS AND DISCUSSION

Dipole Moments

The dipole moment of polyatomic molecules can be considered as the resultant of the vectorial combination of the moments of the individual groups or bonds. Provided that the molecular geometry is known, the calculation of dipole moment is carried out by vectorial combination of the partial dipole moments. The deviations of experimental values from those calculated for H₃SiCH₂Y with Y = Cl, Br, and I were attributed to nonbonded interaction between the halogen and silicon³. However, the mechanism of the α -effect was proposed¹⁴ to be $n-\sigma + \sigma_{si-x}^*$ or $n-\sigma + \sigma_{si-c}^*$ molecular interaction, which might possibly result in an increase in μ_{X_3Si} and/or in μ_{Si-C} values. Provided that the α -effect takes plase, the total dipole moment of X₃SiCH₂Y is to be controlled by possible changes in three partial dipole moments μ_{C-Cl} , μ_{Si-C} , and μ_{X_3Si} . An analysis of the effect of the three variables on the dipole moment of X₃SiCH₂Y, μ total, can therefore provide better understanding of dipole moment data.

TABLE I

Compound	B.p., °C/Torr	n _D ²⁰	Yield, %	Ref.	
(CH ₃) ₃ SiCH ₂ Br	117	1.4464	85	6	
(CH ₃) ₃ SiCH ₂ I	141	1.4898	65	7	
C ₂ H ₅ O(CH ₂) ₂ SiCH ₂ Br	151.5	1.4420	63	8	
C ₂ H _e O(CH ₂) ₂ SiCH ₂ I	50/8	1.4807	30	9	
$(C_2H_2O)_2CH_2SiCH_2Br$	112/78	1.4368	67	-	
$(C_2H_2O)_2CH_2SiCH_2I$	65.5/4.5	1.4698	26		
$(C_2H_2O)_2 SiCH_2Br$	100/30	1.4272	43		
$(C_2H_5O)_3SiCH_2I$	104/12	1.4572	18	10	4

Yields and Physical Properties of $(CH_3)_3SiCH_2Y$ and $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$

The $(CH_3)_3SiCH_2Y$ having Y = F, Cl, Br and I and isotropic trimethylsilyl group were presumed to possess undistorted tetrahedral angles, which was reported only for (CH₃)₃SiCH₂Cl (ref.¹⁵). A change of only a few degrees in the central angle has been however pointed out to have negligible effect on the molecular dipole moment³. Molecular dipole moments of (CH₃)₃SiCH₂Y were calculated by vector addition of these bond moments: $\overrightarrow{\text{Si}-\text{C}}$ (0.6 D), $\overrightarrow{\text{H}-\text{C}}$ (0.3 D), $\overrightarrow{\text{Si}-\text{alkyl}}$ (0.2 D), (all refs¹⁶⁻¹⁸); bond moments $\overrightarrow{\text{C}-\text{F}}$ (1.49 D), $\overrightarrow{\text{C}-\text{Cl}}$ (1.57 D), $\overrightarrow{\text{C}-\text{Br}}$ (1.52 D), $\overrightarrow{C-I}$ (1.35 D) used in calculation differ from those customarily used¹⁹ due to the adjustment making $\overrightarrow{C-Y}$ moments consistent with molecular dipole moments of CH₃Y compounds¹⁹ and with recently reported¹⁸ value for bond moment $\overrightarrow{H-C}$. Calculated and experimental electric dipole moments of (CH₃)₃SiCH₂Y are seen from Table II. The experimental values are always higher than those calculated and the difference between them is small -0.10-0.16 D. Pressumed that the intramolecular interaction brings about the decrease in μ_{C-Y} , the total dipole moment should diminish as well. Following now the theoretical prediction of the mechanism of the α -effect¹⁴, possible changes of three partial dipole moments μ_{C-Y} , $\mu_{X_{X}Si}$, and μ_{Si-C} affect μ_{total} value such as is illustrated in Fig. 1. We mark the values of the partial dipole moment based on those the calculation of μ_{total} was made $\mu_{standard}$. The difference between this quantity and the value of the dipole moment considered to change (due to the α -effect), $\mu^{\text{standard}} - \mu^{\text{changed}}$, is marked as $\Delta \mu$. Fig. 1 then shows the dependence of the calculated molecular moment, μ_{total} , on the changes of partial dipole moments $\Delta \mu$; positive value of $\Delta \mu$ corresponds to the decrease and negative to the increase of the partial dipole moment. (The changes of partial dipole moments influence μ_{total} of all (CH₃)₃SiCH₂Y similarly, (CH₃)₃SiCH₂F is therefore arbitrarily taken to demonstrate the μ_{total} vs $\Delta \mu$ plot (Fig. 1)). Fig. 1 shows that a decrease

	Y	$\mu^{\text{calc.}}$	μ^{exp} .	$\mu^{exp} - \mu^{calc}$	
=	F	1.86	1.98 ^a	0.12	1
	Cl	1.93	2·03 ^b	0.10	
	Br	1.89	1.99	0.10	
	Ι	1.72	1.88	0.16	

TABLE II Electric Dipole Moments, $\mu(D)$, of $(CH_3)_3SiCH_2Y$ in Benzene

^a Ref.²⁰; ^b ref.¹.

of the μ_{C-F} diminishes μ_{total} , which can on the other hand be compensated by an increase in μ_{Si-C} and/or μ_{C-H} . The former increase is consonant with $n-\sigma + \sigma_{Si-C}^*$ molecular interaction. Presumed that the α -effect is operative in X₃SiCH₂Y, the unlowered or higher value of experimental dipole moments of $(CH_3)_3SiCH_2Y$ compared to those calculated may thus reflect an important increase in μ_{Si-C} and μ_{C-H} bond moments.

NMR-Spectra

The proton chemical shifts of the methylene group in X_3SiCH_2Y having Y = halogen bear a linear relationship to the Huggins electronegativity²¹ of the halogen, the fact having already been reported for X = H (ref.²²) and alkyl (ref.²³). We have compiled $\delta(CH_2)$ values of other silylmethyl halides together with those for some of XCH₂Y with Y = halogen. As it is seen from Table III, the methylene proton chemical shift of all XCH₂Y move to higher field as the halogen electronegativity decreases. The $\delta(H)$ increase for the CH₂(Si) protons when going from I to Cl (or F) within all the X₃SiCH₂Y with X = H, CH₃, C₂H₅O, and Cl (Table III) appears to be compatible with the trend of the δ CH₂(O) values in triethoxysilylmethyl halides (δ CH₂O in ppm, Y: 3·92, Cl (ref.²⁷); 3·89, Br (ref.²⁷), 3·84, I (ref.¹⁰)), but controversial to the trend of the δ (CH₃Si) protons in trimethylsilylmethyl halides

FIG. 1

The Plot of $\mu_{total} vs \Delta \mu$ for Trimethylfluoromethylsilane

The curves 1 - 4 relate to the $\Delta \mu_{C-F}$, $\Delta \mu_{C-H}$, $\Delta \mu_{(CH_3)_3Si}$ and $\Delta \mu_{Si-C}$ correspondingly.

The Plots of the Proton Chemical Shift $\sigma(CH_2)$ in X-CH₂Y vs Halogen Electronegativity χ_Y

The lines 1-5 relate to the compounds with $X = CH_3$, Cl_3Si , H_3Si , $(C_2H_5O)_3Si$ and $(CH_3)_3Si$ respectively. $[\delta(CH_3Si)$ in ppm, Y: 0.07, F (ref.²⁴); 0.11, Cl (ref.²⁵); 0.13, Br (ref.²⁵); 0.17, I (ref.²⁶).]

The δCH_2Si values in the trimethylsilylmethyl halides reveal the CH_2 group to be shielded in chloride more, in bromide about equally, and in iodide even less than in corresponding triethoxysilylmethyl halides. Bearing in consideration the isotropic character of both the silyl groups (no influence of a conformational population on the shielding of CH_2 protons) and the greater electrondonating effect of $(CH_3)_3Si$ group (Taft σ^* constant for $(C_2H_5O)_3$ Si group can be evaluated on the basis of v(Si-H) for $(C_2H_5O)_3SiH$ (ref.³⁴) and the plot of v(Si-H) vs Taft σ^* constant of silyl groups reported in paper³⁵ to be 0.96) one might explain these data by electronic effect variation of at least one of both the silvl groups, *i.e.* by the fact that polar effect of the silyl group(s) depends on the nature of the halogen. (Trimethylsilyl group acts as if possessing leveling effect (Fig. 2) making the CH_2 protons in $(CH_3)_3$. $SiCH_2Y$ for Y = I more acidic and for Y = Cl less acidic with regard to those of corresponding $(C_2H_5O)_3SiCH_2Y$.) This explanation can gain some support from the variation of polar effect of $(CH_3)_3$ Si group when it is bonded to an aromatic system^{36,37} or to CH_nCl_{3-n} group¹ and from recent report on the variation of polar effect of $Cl_n(CH_3)_{3-n}$ Si groups bonded to the oxygen^{38,39}. It can be seen (Table III, Fig. 2) that different slopes of the $\delta(CH_2)$ vs the halogen electronegativity (χ_Y) plots for silylmethyl halides represent only the case of general phenomenon. The following slopes of the $\delta(CH_2)$ vs χ_Y plot can be obtained on the grounds of the reported δCH_2 of the XCH₂Y compounds.

TABLE III

¹H — Chemical Shifts, $\delta(H)$ in ppm Units, of XCH₂Y

			Y		
X	F	Cl	Br	I	
$\mathrm{H}^{a,b}$		2.96	2.59	2.04	
H ₃ Si ^{a,b}		2.94	2.58	2.06	
(CH ₃) ₃ Si	$4.38^{c,d}$	2.72^{e}	2.42^{e}	$1.97^{c,f}$	
(C ₂ H ₅ O) ₃ Si		2·82 ^g	2·45 ^g	1.87 ^{<i>h</i>}	
Cl ₃ Si		$3 \cdot 21^{c, i}$	2.90^{j}	2.65 ^k	
CH ₃	4.36^{l}	3.52 ^{c,1}	3·36 ^{c,1}	$3.15^{c,l}$	
$H_3Ge^{b,m}$		3.06	2.63	2.10	
$(CH_3)_3Sn^c$	·	2·87 ⁿ	2·55°	1.90°	

^a Ref.²²; ^b in cyclohexane; ^c in CCl₄; ^d ref.²⁴; ^e ref.²⁵; ^f ref.²⁶; ^g ref.²⁷; ^h ref.¹⁰; ⁱ this work; ^j ref.²⁸; ^k ref.²⁹; ^l ref.³⁰; ^m ref.³¹; ⁿ ref.³²; ^o ref.³³.

1) Organic halides: H—CH₂Y, 1·79 (ref.²²); CH₃—CH₂Y, 0·74; C₂H₅—CH₂Y, 0·49; n-C₃H₇—CH₂Y, 0·40; (CH₃)₂CH—CH₂Y, 0·24; CH₂=CH—CH₂Y, 0·20; Cl—CH₂Y, 0·58; (all ref.³⁰).

2) Silylmethyl halides: $(C_2H_5O)_3$ Si—CH₂Y, 1·88; H₃Si—CH₂Y, 1·71; (CH₃)₃Si— -CH₂Y, 1·48; Cl₃Si—CH₂Y, 1·08 (all based on Table III).

3) Halides with the CH₂ group bonded to other IVb group element: H_3Ge-CH_2Y , 1.86; $(CH_3)_3Sn-CH_2Y$, 1.92 (both based on Table III).

It can be concluded that the slope of the $\delta(CH_2)$ vs χ_Y plot for organic halides decreases with increasing polarisability of the alkyl group, the low value for ClCH₂Y compounds reflects evidently the special features of the electronic effect transfer in geminal systems having two electronegative centers with nonbonded electrons (compare⁴⁰). The high value for the X₃SiCH₂Y compounds appears to be general and since the same high values for other organometallic halides X₃MCH₂Y with M = Ge, Sn are observed as well, the reasons responsible for the higher slopes for all X₃MCH₂Y compared to those of alkyl halides could be assumed the same.

The NMR data reported for other centers of X_3MCH_2Y with M = Si, Ge, Sn might be of use to explain the high sensitivity of proton chemical shift of the methylene group in silylmethyl halides to the halogen variation and it may be worthwhile to go throughout them.

Starting with chlorides, significant differences between ³⁵Cl-NQR frequences of $RR'R''MCH_2Cl$ having M = Si, Ge and Sn and those with M = C were observed for electrondonating R substituents, the difference being diminished when R was becoming more electronwithdrawing in the case of M=Si, but not in the case of M=Ge and Sn (ref.⁴). A decreased C-Cl bond order in the RR'R"MCH₂Cl compounds with M=Si, Ge, Sn was ascribed to the electron transfer from chlorine to the atom M (the α -effect⁴). Further, no relation was found between quadrupole splitting and chemical shift in Moessbauer spectra of R₃SnCH₂X compounds (X is the first row element) and the chemical nature of the substituent X, revealing thus ability of the CH₂ group to insulate the Sn atom of these compounds from the influence of the polar effect variation of the substituents X (ref.⁴¹). The proton chemical shifts, $\delta(CH_2)$ for the Cl_3SnCH_2Cl and $(CH_3)_3SnCH_2Cl$ differ however noticeably³². The substituent effect of the ClCH₂ group on the ²⁹Si chemical shift varies and depends on the nature of silyl group in the XYZSiCH₂Cl (ref.⁴²). Additionally, in spite of the anomalous transmission of the inductive effect of the silyl groups to chlorine⁵, the magnetic shielding of the protons of the CH₂ group appears in these compounds to be consonant with the operation of inductive effect of the silyl group⁵. The ¹¹⁹Sn chemical shift in $(CH_3)_3SnCH_{3-n}Y_n$ with Y = Cl, and Br reveal the Sn atom to be always slightly more deshielded in bromide than in chloride (the greater bulk and

polarisability of the bromine was taken for explanation)⁴³. Analogous situation is encountered for silyl compounds as well; the silicon turns out from the ²⁹Si-NMR spectra of $(CH_3)_3SiCH_2Y$ with Y = Cl, Br, to be somewhat more deshielded in trimethylsilylmethyl bromide⁴⁴. ¹H-NMR spectra of the (CH₃)₃SnCH₂F and (CH₃)₃. .SnCH₂Cl show the CH₂ group less shielded and the methyl group to be more shielded in the former compound⁴⁵. The proton chemical shifts of the H₃M group in H_3MCH_2Y having Y halogen and M = Si, Ge move with the variation of halogen in the opposite direction when compared to proton chemical shifts of the methylene group^{22,30}. It seems then fair to conclude that the variation of electronic effect of the X group modifies properties of the center Y in the X₃MCH₂Y much less than expected, and the variation of electronic effect of the Y group (change of chlorine for bromine and the like) leads to the negligible changes in magnetic shielding of the M (the case of Si), or it doesn't affect magnetic shielding of this atom (the case of Sn) at all. The interposed CH₂ group and also groups X (CH₃ or H) do experience the above electronic effect variations significantly. The methylene group is thus shown to absorb changes in electronic effect of the adjacent (terminal) molecular parts of X₃MCH₂Y which is hardly to account for by an electron transfer through σ bonds but the consideration of a through space intramolecular interaction, mechanism of which can even vary when going from one compound to another, appears thus reasonable. Proceeding now to the explanation of the different slopes of $\delta(CH_2)$ vs χ_Y relationship, we make use of the fact that the silyl group has been shown by CNDO/2 and SCFMOcalculations to destabilize carbonium cation^{46,47}. The similar action may be also possessed by other X₃Si (or X₃M) groups. Contrarily to the action of alkyl groups (these were reported to stabilize an electron deficient center^{48,49}), the X_3Si (or X_3M) groups can be assumed to increase the electron deficiency on the methylene group of the X_3MCH_2Y compounds, this action being more significant when the halogen electronegativity increases. Such destabilizing action of the X_3M groups should result in a steeper slope of the $\delta(CH_2)$ vs χ_Y for X₃MCH₂Y when compared to that for alkyl halides and should put the line for the plot of the X₃MCH₂Cl below the line for alkyl halides. The latter is not the case, which suggests another phenomenon increasing relative shielding of the protons of the methylene group in the X₃MCH₂Cl to be operative. It might be an intramolecular interaction between the halogen and the atom M; the $\delta(CH_2)$ in X₃MCH₂Y should be controlled together with the inductive effect of X_3M group and its destabilizing action also by an extent of the α -effect. Provided that inductive effect of the X₃Si group does not depend on the halogen we may guess the slopes of the $\delta(CH_2) vs \chi_Y$ plots for the X₃SiCH₂Y compounds to be controlled by both the destabilizing action of the X₃Si group and an extent of the intramolecular interaction, these influences being directed against one another.

The IR Basicity Data

The IR absorption spectra of hydrogen bonds of phenol interacting with oxygen of R—O—R' in CCl₄ have been reported to reflect the proton acceptor ability (basicity) of the oxygen and to provide an information on the polar effects of the R and R' substituents^{40,50-51}. An examination of the IR basicity of $(C_2H_5O)_n(CH_3)_{3-n}$. SiCH₂Y with Y = halogen, the oxygen atom of those can be looked upon as the indicative center giving an information on the polar effect of the YCH₂ group, can be made on the basis of linear relationship between the oxygen basicity $[\Delta \nu(OH)]$ and $\sum \sigma^*$ parameter, which was reported earlier^{52,53} for R_nSi(OC₂H₅)_n having R groups exerting solely inductive effect. The earlier obtained parameters of the Taft equation (1)

$$\Delta v(OH) = \varrho^* \cdot \sum \sigma^* + C \tag{1}$$

for individual $R_1R_2R_3SiOC_2H_5$, $R_1R_2Si(OC_2H_5)_2$, and $R_1Si(OC_2H_5)_3$ are given in ref.⁵³ and from the linear correlations evaluated inductive effect of YCH₂ group in $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ is, together with the $\Delta v(OH)$ data for these compounds, given in Table IV. All the YCH₂ groups turn out to affect the proton acceptor ability of the oxygen in $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ by electronwithdrawing action, which is, with regard to the known -I effect of YCH₂ groups in organic compounds, reduced for all *n* and all Y. This reduction of -I effect of all YCH₂ substituents in all

TABLE IV

Wavenumber Shift, $\Delta \nu$ (OH) in cm⁻¹, of Phenol Interacting with the $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ Compounds in CCl₄ and Appraised Taft Polar Constants of the YCH₂ Groups

n	Y	Δ <i>ν</i> (OH)	$\sigma^*_{ m YCH_2}{}^a$	
 1	Clb	238	0.57 ± 0.05	
	Br	231	0.68 ± 0.05	
	I	245	0.45 ± 0.05	
2	Cl^b	226	0.51 + 0.06	
2	Br	226	0.51 + 0.06	
	I	230	0.44 ± 0.06	
2	$C1^{b}$	210	0.59 ± 0.09	
5	Br	210	0.59 ± 0.09	
	I	213	0.53 ± 0.09	

^a The σ^* 's customarily used for ClCH₂, BrCH₂, and ICH₂ are 1.05, 1.00, and 0.85 respectively⁵⁴. ^b Ref.⁵. $(C_2H_5O)_n(CH_3)_{3-n}SiCH_2Y$ clearly speaks in favour of intramolecular interaction leading to the transfer of electrons from Y to the silicon.

An intramolecular interaction earlier proposed for silylmethyl chlorides is thus also proved for other silylmethyl halides, despite that confirmatory evidence for its operation in the X_3SiCH_2Y can not be obtained from dipole moment and NMR data.

The authors wish to thank Dr M. Jakoubková for the IR basicity measurement.

REFERENCES

- 1. Freiser H., Charles R., Speier J., Eagle M.: J. Amer. Chem. Soc. 73, 5229 (1951).
- 2. Steward O. W., Pierce O. R.: J. Amer. Chem. Soc. 83, 4932 (1961).
- 3. Bellama J. M., MacDiarmid A. G.: J. Organometal. Chem. 24, 91 (1970).
- 4. Voronkov M. G., Feshin V. P., Mironov V. F., Mikhailanc J. A., Gar T. K.: Zh. Obshch. Khim. 41, 2211 (1971).
- 5. Pola J., Chvalovský V.: This Journal 42, 3581 (1977).
- 6. Speier J. L.: J. Amer. Chem. Soc. 73, 826 (1951).
- 7. Whitmore F. C., Sommer L. H.: J. Amer. Chem. Soc. 68, 481 (1946).
- 8. Simmler W., Walz H., Niederprüm H.: Chem. Ber. 96, 1495 (1963).
- 9. Leitheiser R. H.: Diss. Abstr. 17, 225 (1957).
- Voronkov M. G., Dyakov V. M., Lukina Y. A., Samsonova G. A., Kudyakov N. M.: Zh. Obshch. Khim. 45, 2010 (1975).
- 11. LeFévre R. J. W., Russel P.: Trans. Faraday Soc. 43, 374 (1947).
- 12. Halverstadt I. F., Kumler W. D.: J. Amer. Chem. Soc. 64, 2988 (1942).
- 13. Pola J., Chvalovský V.: This Journal 38, 1674 (1973).
- 14. Ponec R., Chvalovský V.: This Journal 40, 2309 (1975).
- 15. Hustings J. M., Bauer S. H.: J. Chem. Phys. 18, 13 (1950).
- 16. Altshuler A. P., Rosenbloom L.: J. Amer. Chem. Soc. 77, 272 (1955).
- 17. Eaborn C.: Organosilicon Compounds, p. 483. Butterworths, London 1960.
- 18. Rothenberg S.: J. Amer. Chem. Soc. 93, 68 (1971).
- 19. Minkin V. I., Osipov O. A., Zhdanov Yu. A.: Dipolnye Momenty v Organicheskoi Khimii. Khimia, Moscow 1968.
- 20. Včelák J., Papoušková Z.: Unpublished results.
- 21. Huggins M. L.: J. Amer. Chem. Soc. 75, 4123 (1953).
- 22. Bellama J. M., MacDiarmid A. G.: J. Organometal. Chem. 18, 275 (1969).
- 23. Cavanaugh J. R., Dailey B. P.: J. Chem. Phys. 34, 1099 (1961).
- 24. Schraml J., Včelák J., Engelhardt G., Chvalovský V.: This Journal 41, 3758 (1976).
- 25. Cook M. A., Eaborn C., Walton D. R. M.: J. Organometal. Chem. 29, 389 (1971).
- 26. Köbrich V. G., Nagel R.: Chem.-Ztg. 1970, 984.
- Voronkov M. G., Feshin V. P., Dyakov V. M., Romanenko L. S., Baryshok V. P., Sigalov M. V.: Dokl. Akad. Nauk SSSR 223, 1133 (1975).
- 28. Jarwie A. W. P., Rowley R. J.: J. Organometal. Chem. 57, 261 (1973).
- 29. Dyakov M., Lukina Y., A., Voronkov M. G.: Zh. Obshch. Khim. 46, 2157 (1976).
- 30. Bowey F. A.: NMR *Data Tables for Organic Compounds*, Vol. 1. Interscience, New York 1967.
- 31. Bellama J. M., McCormick C. J.: Inorg. Nucl. Chem. Lett. 7, 533 (1971).
- 32. Kostyanovskii R. G., Prokofiev A. K.: Izv. Akad. Nauk SSSR 1968, 274.

Collection Czechoslov. Chem. Commun. [Vol. 43] [1978]

3200

Interaction Between Halogen and Silicon

- 33. Seyferth D., Andrews S. B.: J. Organometal. Chem. 30, 151 (1971).
- 34. Thompson H. W.: Spectrochim. Acta 16, 238 (1960).
- 35. Egorov Y. A., Morozov V. P., Kovalenko N. F.: Ukr. Khim. Zh. 31, 123 (1965).
- 36. Soffer H., DeVries T.: J. Amer. Chem. Soc. 75, 2821 (1953).
- 37. Soffer H., DeVries T.: J. Amer. Chem. Soc. 73, 5817 (1951).
- 38. Pola J., Chvalovský V.: This Journal 43, 746 (1978).
- 39. Pola J., Chvalovský V.: This Journal 42, 484 (1977).
- 40. Pola J., Chvalovský V.: This Journal 43, 760 (1978).
- 41. Khranov V. V., Goldanskii V. I., Prokofiev A. K., Kostyanovskii R. G.: Zh. Obshch. Khim. 37, 3 (1967).
- 42. Schraml J., Včelák J., Chvalovský V.: This Journal 39, 267 (1974).
- Davies A. G., Harrison P. G., Kennedy J. D., Mitchell T. N., Puddephatt R. J., McFarlane W.: J. Chem. Soc. C 1969, 1136.
- 44. School R. L., Maciel G. E., Musker W. K.: J. Amer. Chem. Soc. 94, 6376 (1972).
- 45. Kostyanovskii R. G., Prokofiev A. K.: Dokl. Akad. Nauk SSSR 164, 1054 (1965).
- 46. Pitt C. G.: J. Organometal. Chem. 61, 49 (1973).
- 47. Eaborn C., Feichtmayr F., Horn M., Murrell J. N.: J. Organometal. Chem. 77, 39 (1974).
- 48. Brauman J. I., Blair L. K.: J. Amer. Chem. Soc. 92, 5986 (1970).
- 49. Kebarle P., Haynes R. N., Collin J. G.: J. Amer. Chem. Soc. 89, 5753 (1967).
- 50. Koppel I. A., Payu A. I., Pikhl V. O.: Org. Reactiv. 10, 921 (1973).
- 51. Pola J., Jakoubková M., Chvalovský V.: This Journal 40, 2063 (1975).
- 52. Mileshkevich V. P., Nikolaev G. A., Karlin A. V., Parshina L. G.: Org. Reactiv. 9, 805 (1972).
- 53. Pola J., Jakoubková M., Chvalovský V.: This Journal 43, 753 (1978).
- 54. Zhdanov Y. A., Minkin V. I.: Korrelacionnyi Analiz v Organicheskoi Khimii. Izd. Rostov. Univ., Rostov 1966.

Translated by the author (J. P.).